Affine root systems and dual numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extended Affine Root Systems

There are two notions of the extended affine root systems in the literature which both are introduced axiomatically. One, extended affine root system (SAERS for short), consists only of nonisotropic roots, while the other, extended affine root system (EARS for short), contains certain isotropic roots too. We show that there is a one to one correspondence between (reduced) SEARSs and EARSs. Name...

متن کامل

Finite Fields, Root Systems and Orbit Numbers of Chevalley Groups

We describe combinatorial techniques to determine the numbers of semisim-ple conjugacy classes and adjoint orbits with xed class of centralizers for simply connected nite groups of Lie type.

متن کامل

Parametrizations of Infinite Biconvex Sets in Affine Root Systems

We investigate in detail relationships between the set B of all infinite “biconvex” sets in the positive root system ∆+ of an arbitrary untwisted affine Lie algebra g and the set W of all infinite “reduced word” of the Weyl group of g. The study is applied to the classification of “convex orders” on ∆+ (cf. [Ito]), which are indispensable to construct “convex bases” of PoincaréBirkhoff-Witt typ...

متن کامل

The Classification of Convex Orders on Affine Root Systems

We classify all total orders having a certain convexity property on the positive root system of an arbitrary untwisted affine Lie algebra g. Such total orders are called convex orders and were used to construct Poincaré-BirkhoffWitt type bases of the upper triangular subalgebra of the quantized enveloping algebra of g which are called convex bases.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Physics B - Proceedings Supplements

سال: 2001

ISSN: 0920-5632

DOI: 10.1016/s0920-5632(01)01572-9